Y - systems and generalized associahedra
نویسندگان
چکیده
The goals of this paper are two-fold. First, we prove, for an arbitrary finite root system Φ, the periodicity conjecture of Al. B. Zamolodchikov [24] that concerns Y -systems, a particular class of functional relations playing an important role in the theory of thermodynamic Bethe ansatz. Algebraically, Y -systems can be viewed as families of rational functions defined by certain birational recurrences formulated in terms of the root system Φ. We obtain explicit formulas for these rational functions, which always turn out to be Laurent polynomials, and prove that they exhibit the periodicity property conjectured by Zamolodchikov. In a closely related development, we introduce and study a simplicial complex ∆(Φ), which can be viewed as a generalization of the Stasheff polytope (also known as associahedron) for an arbitrary root system Φ. In type A, this complex is the face complex of the ordinary associahedron, whereas in type B, our construction produces the Bott-Taubes polytope, or cyclohedron. We enumerate the faces of the complex ∆(Φ), prove that its geometric realization is always a sphere, and describe it in concrete combinatorial terms for the classical types ABCD. The primary motivation for this investigation came from the theory of cluster algebras, introduced in [9] as a device for studying dual canonical bases and total positivity in semisimple Lie groups. This connection remains behind the scenes in the text of this paper, and will be brought to light in a forthcoming sequel1 to [9].
منابع مشابه
Root systems and generalized associahedra
Contents Root systems and generalized associahedra 1 Root systems and generalized associahedra 3 Lecture 1. Reflections and roots 5 1.1. The pentagon recurrence 5 1.2. Reflection groups 6 1.3. Symmetries of regular polytopes 8 1.4. Root systems 11 1.5. Root systems of types A, B, C, and D 13 Lecture 2. Dynkin diagrams and Coxeter groups 15 2.1. Finite type classification 15 2.2. Coxeter groups ...
متن کاملBrick Polytopes of Spherical Subword Complexes: a New Approach to Generalized Associahedra
We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn out to coincide with the known realizations of generalized associahedra, thus opening new perspec...
متن کاملVertex Barycenter of Generalized Associahedra
We show that the vertex barycenter of generalized associahedra and permutahedra coincide for any finite Coxeter system.
متن کاملBrick Polytopes of Spherical Subword Complexes and Generalized Associahedra
We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn out to coincide with the known realizations of generalized associahedra, thus opening new perspec...
متن کاملEnumerative properties of generalized associahedra
Some enumerative aspects of the fans called generalized associahedra, introduced by S. Fomin and A. Zelevinsky in their theory of cluster algebras, are considered in relation with a bicomplex and its two spectral sequences. A precise enumerative relation with the lattices of generalized noncrossing partitions is conjectured and some evidence is given.
متن کاملar X iv : m at h / 06 09 18 4 v 1 [ m at h . C O ] 6 S ep 2 00 6 FACES OF GENERALIZED PERMUTOHEDRA
The aim of the paper is to calculate face numbers of simple generalized permutohedra, and study their f -, hand γ-vectors. These polytopes include permutohedra, associahedra, graph-associahedra, graphical zonotopes, nestohedra, and other interesting polytopes. We give several explicit formulas involving descent statistics, calculate generating functions and discuss their relationship with Simon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004